
Deadline Scheduler
Open Issues

Daniel Bristot de Oliveira
Red Hat, Inc.

Who is Daniel?

Systems which deal with external events with timing constraints
- Real from real/external-world
- Time from timing constraints

The response of an event is correct if and only if:
- The logical response is correct
- It is produced within a deadline

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira3

Real-time systems

● A system is view as a “model”
○ A system is composed by a set of n tasks
○ A task is a set of infinity recurring jobs.

○ Each task is characterized by some parameters:

■ C or Q = WCET or Budget

■ T or P = Period or Minimum inter-arrival time

■ D = Deadline

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira4

Real-time scheduler modeling

- dl_period = Period [sporadic || periodic]
- dl_deadline = Relative deadline [by default == period … but can be <]
- dl_runtime = Execution time;

Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.5

on Linux, DL tasks are characterized by:

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira6

Regarding Period:

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira7

Regarding Deadline:

Why EDF scheduler?

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira9

 Fixed Priority versus Deadline

EDF is optimal!

 *Under optimal conditions

● If tasks does not misbehave
● Job does not suspend (dequeue/enqueue) during an activation
● Implicit deadline (deadline == period)
● Uniprocessor

Note:
 [U]tilization = C/T (or Q/P, runtime/period)
 [D]ensity = C/D (or Q/D, runtime/deadline)

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira11

EDF is optimal (U<=1) with

So, let’s explore each point!

What if a task runs longer than it said (C) it was suppose to run?

Or

What if the utilization goes higher than 100%?

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira13

Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.14

The domino effect

● Admission control to avoid overload:

○ The sum of the Utilization of all tasks cannot be higher than

rt_period-rt_runtime/rt_period (by default 95%).

● CBS to avoid a misbehaving task to run more than runtime.

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira15

To avoid the domino problem...

- Throttle a misbehaving task that uses more than allowed
- Try to provide runtime CPU time every period.

- It relies on non-suspending tasks.

Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.16

CBS: Constant Bandwidth Server

By assuming non-suspending tasks...
● It is implicitly assumed that, when queued, the absolute U of a task is

bound to its relative U (U=runtime/period).
● In other words: The task will never overload the system.
● If the task suspends/blocks, that might not be the case...

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira17

CBS & Suspending task

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira18

For example, a task with U = 3/9 blocks with 2/8

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira19

Returning with U=2/3

Notation: C/P & C/D/P

- CBS wakeup rule (ensures that a task will not overload the system):
If the deadline is in the past:

new absolute runtime and absolute deadline is set.
If the deadline is in the future:

If the possible U < allowed U
Go ahead and run, my little reservation.

else
Reset runtime, set the new deadline

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira20

CBS & Self-suspending tasks

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira21

Replenish the runtime and reset period

Original deadline New deadline

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira22

In the presence of another deadline task...

Original deadline New deadline

Notation: C/P & C/D/P

What do we care more,
having runtime/period after a wakeup

 or try to make the deadline?

- CBS wakeup rule (ensures that a task will not overload the system):
If the deadline is in the past:

new absolute runtime and absolute deadline is set.
If the deadline is in the future:

If the absolute U < relative U
Go ahead and run, my little CBS.

else
Truncate runtime, new runtime = (C / P) * laxity

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira24

Revised CBS & Self-suspending tasks

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira25

Using the revised CBS:

Notation: C/P & C/D/P

Should we consider using the revised
CBS?

● Linux’s deadline scheduler accepts task with deadline <= period.
● In the presence of an !implicit deadline task, the admission test is not

valid to “guarantee” the deadline, even on single-core systems.
● For example, two tasks with 3/10 (60%) but deadline of 5:

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira27

Constrained deadline

Notation: C/P & C/D/P

That is easy!
We should use runtime/deadline,

not runtime/period!

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira29

No, it is too pessimistic...

Notation: C/P & C/D/P

There is one case in which we decided to
use it, with revised CBS...

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira31

Self-suspending constrained deadline task

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira32

Self-suspending constrained deadline task

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira33

Self-suspending constrained deadline task

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira34

Self-suspending constrained deadline task

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira35

Self-suspending constrained deadline task

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira36

Self-suspending constrained deadline task

Notation: C/P & C/D/P

- CBS wakeup rule (ensures that a task will not overload the system):
If the deadline is in the past:

If the next period is in the future:
Throttle waiting the next period;

else
new absolute runtime and absolute deadline is set.

If the deadline is in the future:
If the absolute Density is < relative Density

Go ahead and run, my little CBS.
else

Truncate runtime, new runtime = (C / D) * laxity

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira37

Revised CBS & Suspending & Constrained DL

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira38

Self-suspending constrained deadline task

Notation: C/P & C/D/P

Mamma mia!
Things are confuse for deadline < period

& Self-suspending!?!?!?!

Suspending + constrained deadline
is a REAL open issue.

Let’s talk about multi-processor
scheduling

a scheduler can be classified as:
- Partitioned: When each scheduler manages a single CPU
- Global: When a single scheduler manages all M CPUs of the system

- Clustered: When a single scheduler manages a disjoint subset of
the M CPUs

- a CPU cannot belong to two “domains”.

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira42

Multi-processor scheduling

Let’s talk about global scheduling!

Global scheduling adds a lot of anomalies.
For instance, there is no critical instant.

- Release all tasks at same time is not the worst case anymore
“Obvious things” are not obvious anymore:

- Reducing the load of a schedulable taskset does not turn guarantee the
task set will still schedulable...

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira44

Global scheduling

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira45

Dhall’s effect

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira46

Reducing the load...

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira47

Increasing a little bit… BOOM!

Notation: C/P & C/D/P

Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.48

Taking Dhall’s effect in account, an admission test would be:
- ∑(U) <= M - (M - 1) * Umax
- Where Umax is the highest U of all tasks

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira49

Solution: Partitioned + Clustered

What if those small tasks were per-cpu
tasks?

So should we always use partitioned?

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira52

How about this scenario?

Notation: C/P & C/D/P

Neither partitioned nor global are
optimal...

Is there anything else we could?

The word is: semi-partitioned

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira56

Let’s take this scenario:

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira57

Let’s pin some tasks:

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira58

Then, we split the other one….

Notation: C/P & C/D/P

Hey hey hey! Didn’t you say constrained
deadline tasks are a problem?

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira60

They are not always a problem:

Notation: C/P & C/D/P

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira61

And voilà!

Notation: C/P & C/D/P

How good is this idea?

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor
Real-Time Scheduling with Semi-Partitioned Reservations:

“Empirically, near-optimal hard real-time schedulability
— usually ≥99% schedulable utilization —

can be achieved with simple, well-known and well-
understood, low-overhead techniques (+ a few tweaks).”

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira63

B. Brandenburg and M. Gül

Semi-Partitioned Scheduling of Dynamic Real-Time Workload: A Practical
Approach Based on Analysis-Driven Load Balancing.

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira64

Daniel Casini, Alessandro Biondi, Giorgio Buttazzo

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira65

Online semi-partitioned comparison:

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira66

Online semi-partitioned comparison:

Affinity for global scheduling is a problem
For semi-partitioned… it is not.

- Just one more input to the heuristics
- Possible to make a “per-cpu fake load” to reserve time for CFS
- DL Server to schedule CFS: Hierarchical scheduler

- A re-implementation of RT Throttling:

- [PATCH] sched/rt: RT_RUNTIME_GREED sched feature

- https://lkml.org/lkml/2016/11/7/55

Deadline Scheduler - Open Issues - Daniel Bristot de Oliveira67

Affinity! For almost free

We still have arguments for another talk

But I am being throttled...

Questions?

Thank you! Obrigado! Grazie Mille!

